Style Editor Docs
     
  • Home
  • Products & Services
    • DataHowLab
    • Professional Services
    • Innovation Hub
  • Resources
    • Technology
    • Publications
    • Bioprocess Blog
  • Education & Events
    • Schedule events & trainings
    • Symposium
  • About
    • DataHow
    • Team
    • Careers
    • Contact
   info@datahow.ch
  • Home
  • Products & Services
    • DataHowLab
    • Professional Services
    • Innovation Hub
  • Resources
    • Technology
    • Publications
    • Bioprocess Blog
  • Education & Events
    • Schedule events & trainings
    • Symposium
  • About
    • DataHow
    • Team
    • Careers
    • Contact
    Publications  ·  21. November 2018

    Accelerated Bioprocess Development of Endopolygalacturonase - Production with Saccharomyces cerevisiae

    Full title: 

    Accelerated Bioprocess Development of Endopolygalacturonase-Production with Saccharomyces cerevisiae Using Multivariate Prediction in a 48 Mini-Bioreactor Automated Platform

     

    Abstract:

    Mini-bioreactor systems enabling automatized operation of numerous parallel cultivations are a promising alternative to accelerate and optimize bioprocess development allowing for sophisticated cultivation experiments in high throughput. These include fed-batch and continuous cultivations with multiple options of process control and sample analysis which deliver valuable screening tools for industrial production. However, the model-based methods needed to operate these robotic facilities efficiently considering the complexity of biological processes are missing. We present an automated experiment facility that integrates online data handling, visualization and treatment using multivariate analysis approaches to design and operate dynamical experimental campaigns in up to 48 mini-bioreactors (8–12 mL) in parallel. In this study, the characterization of Saccharomyces cerevisiae AH22 secreting recombinant endopolygalacturonase is performed, running and comparing 16 experimental conditions in triplicate. Data-driven multivariate methods were developed to allow for fast, automated decision making as well as online predictive data analysis regarding endopolygalacturonase production. Using dynamic process information, a cultivation with abnormal behavior could be detected by principal component analysis as well as two clusters of similarly behaving cultivations, later classified according to the feeding rate. By decision tree analysis, cultivation conditions leading to an optimal recombinant product formation could be identified automatically. The developed method is easily adaptable to different strains and cultivation strategies, and suitable for automatized process development reducing the experimental times and costs.

    Full Publication
    tagPlaceholderTags:

    Write a comment

    Comments: 0
    draggable-logo

    Hagenholzstrasse.111 / 8050 Zurich/ info@datahow.ch 


    Schedule a Demo

    Edit here your navigation button
    is-switcher admin-only
    is-switcher admin-only
    is-switcher admin-only

     

    Main colors
       bg-primary
       bg-primary-light
       bg-primary-dark
       bg-secondary
       bg-secondary-dark
    Template sections
       body
       top-header
       header
       content
    Footer Styles
       background
       text color
       link color
       horizontal line
    Buttons
       style 1
       style 2
       style 3
    Other elements
      social icons
      navigation color
      subnav background
    Mobile navigation
       background color
       navigation color
    Template configurations
    g-font
    navigation styles
    size-17 weight-400
    content styles
    form-white
    footer styles
    o-form color-white
    Typography
    Heading H1
    weight-600
    Heading H2
    weight-600
    Heading H3
    weight-600
    Buttons
    weight-600 is-uppercase
    Animations
    wow animated fadeInUp

    Note:
    All changes made here will be applied to your entire website.

    About | Privacy Policy | Cookie Policy | Sitemap
    © Copyright 2022 - DataHow - All rights reserved
    Log out | Edit
    • Scroll to top