Style Editor Docs
     
  • Home
  • Products & Services
    • DataHowLab
    • Professional Services
    • Innovation Hub
  • Resources
    • Technology
    • Publications
    • Bioprocess Blog
  • Education & Events
    • Schedule events & trainings
    • Symposium
  • About
    • DataHow
    • Team
    • Careers
    • Contact
   info@datahow.ch
  • Home
  • Products & Services
    • DataHowLab
    • Professional Services
    • Innovation Hub
  • Resources
    • Technology
    • Publications
    • Bioprocess Blog
  • Education & Events
    • Schedule events & trainings
    • Symposium
  • About
    • DataHow
    • Team
    • Careers
    • Contact
    Publications  ·  24. May 2019

    Monte Carlo Simulations for the Analysis of Non-linear Parameter Confidence Intervals in Optimal Experimental Design

    Full title: 

    Monte Carlo Simulations for the Analysis of Non-linear Parameter Confidence Intervals in Optimal Experimental Design

     

    Abstract:

    Especially in biomanufacturing, methods to design optimal experiments are a valuable technique to fully exploit the potential of the emerging technical possibilities that are driving experimental miniaturization and parallelization. The general objective is to reduce the experimental effort while maximizing the information content of an experiment, speeding up knowledge gain in R&D. The approach of model-based design of experiments (known as MBDoE) utilizes the information of an underlying mathematical model describing the system of interest. A common method to predict the accuracy of the parameter estimates uses the Fisher information matrix to approximate the 90% confidence intervals of the estimates. However, for highly non-linear models, this method might lead to wrong conclusions. In such cases, Monte Carlo sampling gives a more accurate insight into the parameter's estimate probability distribution and should be exploited to assess the reliability of the approximations made through the Fisher information matrix. We first introduce the model-based optimal experimental design for parameter estimation including parameter identification and validation by means of a simple non-linear Michaelis-Menten kinetic and show why Monte Carlo simulations give a more accurate depiction of the parameter uncertainty. Secondly, we propose a very robust and simple method to find optimal experimental designs using Monte Carlo simulations. Although computational expensive, the method is easy to implement and parallelize. This article focuses on practical examples of bioprocess engineering but is generally applicable in other fields.

    Full Publication
    tagPlaceholderTags:

    Write a comment

    Comments: 0
    draggable-logo

    Hagenholzstrasse.111 / 8050 Zurich/ info@datahow.ch 


    Schedule a Demo

    Edit here your navigation button
    is-switcher admin-only
    is-switcher admin-only
    is-switcher admin-only

     

    Main colors
       bg-primary
       bg-primary-light
       bg-primary-dark
       bg-secondary
       bg-secondary-dark
    Template sections
       body
       top-header
       header
       content
    Footer Styles
       background
       text color
       link color
       horizontal line
    Buttons
       style 1
       style 2
       style 3
    Other elements
      social icons
      navigation color
      subnav background
    Mobile navigation
       background color
       navigation color
    Template configurations
    g-font
    navigation styles
    size-17 weight-400
    content styles
    form-white
    footer styles
    o-form color-white
    Typography
    Heading H1
    weight-600
    Heading H2
    weight-600
    Heading H3
    weight-600
    Buttons
    weight-600 is-uppercase
    Animations
    wow animated fadeInUp

    Note:
    All changes made here will be applied to your entire website.

    About | Privacy Policy | Cookie Policy | Sitemap
    © Copyright 2022 - DataHow - All rights reserved
    Log out | Edit
    • Scroll to top