Style Editor Docs
     
  • Home
  • Products & Services
    • DataHowLab
    • Professional Services
    • Innovation Hub
  • Resources
    • Technology
    • Publications
    • Bioprocess Blog
  • Education & Events
    • Schedule events & trainings
    • Symposium
  • About
    • DataHow
    • Team
    • Careers
    • Contact
   info@datahow.ch
  • Home
  • Products & Services
    • DataHowLab
    • Professional Services
    • Innovation Hub
  • Resources
    • Technology
    • Publications
    • Bioprocess Blog
  • Education & Events
    • Schedule events & trainings
    • Symposium
  • About
    • DataHow
    • Team
    • Careers
    • Contact
    Publications  ·  19. June 2019

    Dynamic Modelling of Phosphorolytic Cleavage Catalyzed by Pyrimidine-Nucleoside Phosphorylase

    Full title: 

    Dynamic Modelling of Phosphorolytic Cleavage Catalyzed by Pyrimidine-Nucleoside Phosphorylase

     

    Abstract:

    Pyrimidine-nucleoside phosphorylases (Py-NPases) have a significant potential to contribute to the economic and ecological production of modified nucleosides. These can be produced via pentose-1-phosphates, an interesting but mostly labile and expensive precursor. Thus far, no dynamic model exists for the production process of pentose-1-phosphates, which involves the equilibrium state of the Py-NPase catalyzed reversible reaction. Previously developed enzymological models are based on the understanding of the structural principles of the enzyme and focus on the description of initial rates only. The model generation is further complicated, as Py-NPases accept two substrates which they convert to two products. To create a well-balanced model from accurate experimental data, we utilized an improved high-throughput spectroscopic assay to monitor reactions over the whole time course until equilibrium was reached. We examined the conversion of deoxythymidine and phosphate to deoxyribose-1-phosphate and thymine by a thermophilic Py-NPase from Geobacillus thermoglucosidasius. The developed process model described the reactant concentrations in excellent agreement with the experimental data. Our model is built from ordinary differential equations and structured in such a way that integration with other models is possible in the future. These could be the kinetics of other enzymes for enzymatic cascade reactions or reactor descriptions to generate integrated process models.

    Full Publication
    tagPlaceholderTags:

    Write a comment

    Comments: 0
    draggable-logo

    Hagenholzstrasse.111 / 8050 Zurich/ info@datahow.ch 


    Schedule a Demo

    Edit here your navigation button
    is-switcher admin-only
    is-switcher admin-only
    is-switcher admin-only

     

    Main colors
       bg-primary
       bg-primary-light
       bg-primary-dark
       bg-secondary
       bg-secondary-dark
    Template sections
       body
       top-header
       header
       content
    Footer Styles
       background
       text color
       link color
       horizontal line
    Buttons
       style 1
       style 2
       style 3
    Other elements
      social icons
      navigation color
      subnav background
    Mobile navigation
       background color
       navigation color
    Template configurations
    g-font
    navigation styles
    size-17 weight-400
    content styles
    form-white
    footer styles
    o-form color-white
    Typography
    Heading H1
    weight-600
    Heading H2
    weight-600
    Heading H3
    weight-600
    Buttons
    weight-600 is-uppercase
    Animations
    wow animated fadeInUp

    Note:
    All changes made here will be applied to your entire website.

    About | Privacy Policy | Cookie Policy | Sitemap
    © Copyright 2022 - DataHow - All rights reserved
    Log out | Edit
    • Scroll to top