Style Editor Docs
     
  • Home
  • Products & Services
    • DataHowLab
    • Professional Services
    • Innovation Hub
  • Resources
    • Technology
    • Publications
    • Bioprocess Blog
  • Education & Events
    • Schedule events & trainings
    • Symposium
  • About
    • DataHow
    • Team
    • Careers
    • Contact
   info@datahow.ch
  • Home
  • Products & Services
    • DataHowLab
    • Professional Services
    • Innovation Hub
  • Resources
    • Technology
    • Publications
    • Bioprocess Blog
  • Education & Events
    • Schedule events & trainings
    • Symposium
  • About
    • DataHow
    • Team
    • Careers
    • Contact
    Publications  ·  25. June 2019

    A new generation of predictive models: The added value of hybrid models for manufacturing processes of therapeutic proteins

    Full title: 

    A new generation of predictive models: The added value of hybrid models for manufacturing processes of therapeutic proteins

     

    Abstract:

    Due to the lack of complete understanding of metabolic networks and reaction pathways, establishing a universal mechanistic model for mammalian cell culture processes remains a challenge. Contrarily, data-driven approaches for modeling these processes lack extrapolation capabilities. Hybrid modeling is a technique that exploits the synergy between the two modeling methods. Although mammalian cell cultures are among the most relevant processes in biotechnology and indeed looks ideal for hybrid modeling, their application has only been proposed but never developed in the literature. This study provides a quantitative assessment of the improvement brought by hybrid models with respect to the state-of-the-art statistical predictive models in the context of therapeutic protein production. This is illustrated using a dataset obtained from a 3.5 L fed-batch experiment. With the goal to robustly define the process design space, hybrid models reveal a superior capability to predict the time evolution of different process variables using only the initial and process conditions in comparison to the statistical models. Hybrid models not only feature more accurate prediction results but also demonstrate better robustness and extrapolation capabilities. For the future application, this study highlights the added value of hybrid modeling for model-based process optimization and design of experiments. 

    Full Publication
    tagPlaceholderTags:

    Write a comment

    Comments: 0
    draggable-logo

    Hagenholzstrasse.111 / 8050 Zurich/ info@datahow.ch 


    Schedule a Demo

    Edit here your navigation button
    is-switcher admin-only
    is-switcher admin-only
    is-switcher admin-only

     

    Main colors
       bg-primary
       bg-primary-light
       bg-primary-dark
       bg-secondary
       bg-secondary-dark
    Template sections
       body
       top-header
       header
       content
    Footer Styles
       background
       text color
       link color
       horizontal line
    Buttons
       style 1
       style 2
       style 3
    Other elements
      social icons
      navigation color
      subnav background
    Mobile navigation
       background color
       navigation color
    Template configurations
    g-font
    navigation styles
    size-17 weight-400
    content styles
    form-white
    footer styles
    o-form color-white
    Typography
    Heading H1
    weight-600
    Heading H2
    weight-600
    Heading H3
    weight-600
    Buttons
    weight-600 is-uppercase
    Animations
    wow animated fadeInUp

    Note:
    All changes made here will be applied to your entire website.

    About | Privacy Policy | Cookie Policy | Sitemap
    © Copyright 2022 - DataHow - All rights reserved
    Log out | Edit
    • Scroll to top