Style Editor Docs
     
  • Home
  • Products & Services
    • DataHowLab
    • Professional Services
    • Innovation Hub
  • Resources
    • Technology
    • Publications
    • Bioprocess Blog
  • Education & Events
    • Schedule events & trainings
    • Trainings
    • Upcoming Events
  • About
    • DataHow
    • Team
    • Careers
    • Contact
   info@datahow.ch
  • Home
  • Products & Services
    • DataHowLab
    • Professional Services
    • Innovation Hub
  • Resources
    • Technology
    • Publications
    • Bioprocess Blog
  • Education & Events
    • Schedule events & trainings
    • Trainings
    • Upcoming Events
  • About
    • DataHow
    • Team
    • Careers
    • Contact
    Publications  ·  02. August 2021

    Hybrid Models for the simulation and prediction of chromatographic processes for protein capture

    Full title: 

    Hybrid Models for the simulation and prediction of chromatographic processes for protein capture

     

    Abstract:

    The biopharmaceutical industries are continuously faced with the pressure to reduce the development costs and accelerate development time scales. The traditional approach of heuristic-based or platform process-based optimization is soon getting obsolete, and more generalized tools for process development and optimization are required to keep pace with the emerging trends. Thus, advanced model-based methods that can reduce the can ensure accelerated development of robust processes with minimal experiments are necessary. Though mechanistic models for chromatography are quite popular, their success is limited by the need to have accurate knowledge of adsorption isotherms and mass transfer kinetics. As an alternative, in this work, a hybrid modeling approach is proposed. Thereby, the chromatographic unit behavior is learned by a combination of neural network and mechanistic model while fitting suitable experimental breakthrough curves. Since this approach does not require identifying suitable mechanistic assumptions for all the phenomena, it can be developed with lower effort. Thus, allowing the scientists to concentrate their focus on process development. The performance of the hybrid model is compared with the mechanistic Lumped kinetic Model for in-silico data and experiments conducted on a system of industrial relevance. The flexibility of the hybrid modeling approach results in about three times higher accuracies compared to Lumped Kinetic Model. This is validated for five different isotherm models used to simulate data, with the hybrid model showing about two to three times lower prediction errors in all the cases. Not only in prediction, but we could also show that the hybrid model is more robust in extrapolating across process conditions with about three times lower error than the LKM. Additionally, it could be demonstrated that an appropriately tailored formulation of the hybrid model can be used to generate representations for the underlying principles such as adsorption equilibria and mass transfer kinetics.

    Full Publication
    tagPlaceholderTags:

    Write a comment

    Comments: 0
    draggable-logo

    Hagenholzstrasse.111 / 8050 Zurich/ info@datahow.ch 


    Schedule a Demo

    Edit here your navigation button
    is-switcher admin-only
    is-switcher admin-only
    is-switcher admin-only

     

    Main colors
       bg-primary
       bg-primary-light
       bg-primary-dark
       bg-secondary
       bg-secondary-dark
    Template sections
       body
       top-header
       header
       content
    Footer Styles
       background
       text color
       link color
       horizontal line
    Buttons
       style 1
       style 2
       style 3
    Other elements
      social icons
      navigation color
      subnav background
    Mobile navigation
       background color
       navigation color
    Template configurations
    g-font
    navigation styles
    size-17 weight-400
    content styles
    form-white
    footer styles
    o-form color-white
    Typography
    Heading H1
    weight-600
    Heading H2
    weight-600
    Heading H3
    weight-600
    Buttons
    weight-600 is-uppercase
    Animations
    wow animated fadeInUp

    Note:
    All changes made here will be applied to your entire website.

    About | Privacy Policy | Cookie Policy | Sitemap
    © Copyright 2022 - DataHow - All rights reserved
    Log out | Edit
    • Scroll to top