Style Editor Docs
     
  • Home
  • Products & Services
    • DataHowLab
    • Professional Services
    • Innovation Hub
  • Resources
    • Technology
    • Publications
    • Bioprocess Blog
  • Education & Events
    • Schedule events & trainings
    • Symposium
  • About
    • DataHow
    • Team
    • Careers
    • Contact
   info@datahow.ch
  • Home
  • Products & Services
    • DataHowLab
    • Professional Services
    • Innovation Hub
  • Resources
    • Technology
    • Publications
    • Bioprocess Blog
  • Education & Events
    • Schedule events & trainings
    • Symposium
  • About
    • DataHow
    • Team
    • Careers
    • Contact
    Publications  ·  26. January 2023

    Comparison of strategies for iterative model-based upstream bioprocess development with single and parallel reactor set-ups

    Full title: 

    Comparison of strategies for iterative model-based upstream bioprocess development with single and parallel reactor set-ups

     

    Abstract:

    The bioprocess industry shows an increased interest to use model-based approaches for upstream bioprocess development. Iteratively, one or multiple experiments need to be designed with the objective to iteratively learn the process behavior and drive it towards a desired state. Due to the inherent dynamic nature of upstream bioprocesses, dynamic modeling approaches are used to describe the evolution of the process state. This provides the opportunities to design dynamic changes in the control variables (process parameters) and to understand the influence of those control inputs on the process dynamics, which is particularly important should the model be used for process control. In this contribution, we compare different strategies for iterative dynamic model-based process development with single and parallel reactor set-ups.

     

    Using a simulated bioprocess, we show that most of the strategies quickly converge (typically within 5–6 iterations) on sub-optimal process conditions with satisfactory product concentrations in relation to the global optimum. Our results reveal significant differences in the optimization outcome depending on the strategy used for single and parallel reactor set-ups. Overall, more sophisticated strategies that involve a model validity measure seem to outperform those that purely seek to maximize the quantity of interest. Simply maximizing the upper prediction interval level underperforms significantly when compared to maximizing the median or the median with consideration of the model validity. The insights obtained from this study allow selecting the strategy for single or multi-reactor model-based process development.

    Full Publication
    tagPlaceholderTags:

    Write a comment

    Comments: 0
    draggable-logo

    Hagenholzstrasse.111 / 8050 Zurich/ info@datahow.ch 


    Schedule a Demo

    Edit here your navigation button
    is-switcher admin-only
    is-switcher admin-only
    is-switcher admin-only

     

    Main colors
       bg-primary
       bg-primary-light
       bg-primary-dark
       bg-secondary
       bg-secondary-dark
    Template sections
       body
       top-header
       header
       content
    Footer Styles
       background
       text color
       link color
       horizontal line
    Buttons
       style 1
       style 2
       style 3
    Other elements
      social icons
      navigation color
      subnav background
    Mobile navigation
       background color
       navigation color
    Template configurations
    g-font
    navigation styles
    size-17 weight-400
    content styles
    form-white
    footer styles
    o-form color-white
    Typography
    Heading H1
    weight-600
    Heading H2
    weight-600
    Heading H3
    weight-600
    Buttons
    weight-600 is-uppercase
    Animations
    wow animated fadeInUp

    Note:
    All changes made here will be applied to your entire website.

    About | Privacy Policy | Cookie Policy | Sitemap
    © Copyright 2022 - DataHow - All rights reserved
    Log out | Edit
    • Scroll to top